初始化算子修改第一版,多目标进化过程待修改

This commit is contained in:
yangyudong 2025-04-17 01:52:15 +08:00
parent 75ce959245
commit 47fc9e77a1
16 changed files with 77 additions and 1067 deletions

View File

@ -40,20 +40,33 @@ class EvolutionEngine:
def initialize_population(self, size: int) -> List[AlgorithmIndividual]: def initialize_population(self, size: int) -> List[AlgorithmIndividual]:
"""使用LLM生成初始种群""" """改进后的种群初始化方法"""
problem_config = self._load_problem_config() problem_config = self._load_problem_config()
individuals = []
while len(individuals) < size: # 首先生成多个不同的算法思路
ideas = self.initialize_operator.ideas_generator.generate_ideas(
problem_config["description"],
size
)
# 基于每个思路生成具体实现
individuals = []
for i, idea in enumerate(ideas):
code = self.initialize_operator.generate_initial_code( code = self.initialize_operator.generate_initial_code(
problem_config["description"], problem_config["description"],
problem_config["function_name"], problem_config["function_name"],
problem_config["input_format"], problem_config["input_format"],
problem_config["output_format"] problem_config["output_format"],
idea
) )
if code: # 只添加成功生成的代码 if code:
individuals.append(AlgorithmIndividual(code, generation=0)) individuals.append(AlgorithmIndividual(
code,
generation=0,
metadata={"idea": idea} # 保存原始思路
))
print(f"成功生成初始种群,包含{len(individuals)}个不同个体")
return individuals return individuals
def run_evolution(self, generations: int = None, population_size: int = None): def run_evolution(self, generations: int = None, population_size: int = None):

View File

@ -35,20 +35,33 @@ class MultiObjectiveEvolutionEngine:
print(f"多目标进化参数:{self.evolution_params}") print(f"多目标进化参数:{self.evolution_params}")
def initialize_population(self, size: int) -> List[MultiObjectiveIndividual]: def initialize_population(self, size: int) -> List[MultiObjectiveIndividual]:
"""使用LLM生成初始种群""" """改进后的种群初始化方法"""
problem_config = self._load_problem_config() problem_config = self._load_problem_config()
population = []
while len(population) < size: # 首先生成多个不同的算法思路
ideas = self.initialize_operator.ideas_generator.generate_ideas(
problem_config["description"],
size
)
# 基于每个思路生成具体实现
population = []
for i, idea in enumerate(ideas):
code = self.initialize_operator.generate_initial_code( code = self.initialize_operator.generate_initial_code(
problem_config["description"], problem_config["description"],
problem_config["function_name"], problem_config["function_name"],
problem_config["input_format"], problem_config["input_format"],
problem_config["output_format"] problem_config["output_format"],
idea
) )
if code: if code:
population.append(MultiObjectiveIndividual(code, generation=0)) population.append(MultiObjectiveIndividual(
code,
generation=0,
metadata={"idea": idea} # 保存原始思路
))
print(f"成功生成初始种群,包含{len(population)}个不同个体")
return population return population
def run_evolution(self, generations: int = None, population_size: int = None): def run_evolution(self, generations: int = None, population_size: int = None):

View File

@ -8,6 +8,7 @@ class MultiObjectiveIndividual:
code: str code: str
generation: int generation: int
fitnesses: Dict[str, float] = field(default_factory=dict) fitnesses: Dict[str, float] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
def dominates(self, other: 'MultiObjectiveIndividual') -> bool: def dominates(self, other: 'MultiObjectiveIndividual') -> bool:
"""检查当前个体是否Pareto支配另一个个体""" """检查当前个体是否Pareto支配另一个个体"""
@ -27,7 +28,8 @@ class MultiObjectiveIndividual:
return { return {
"code": self.code, "code": self.code,
"generation": self.generation, "generation": self.generation,
"fitnesses": self.fitnesses "fitnesses": self.fitnesses,
"metadata": self.metadata
} }
@classmethod @classmethod
@ -36,7 +38,8 @@ class MultiObjectiveIndividual:
return cls( return cls(
code=data["code"], code=data["code"],
generation=data["generation"], generation=data["generation"],
fitnesses=data.get("fitnesses", {}) fitnesses=data.get("fitnesses", {}),
metadata=data.get("metadata", {})
) )
def crowding_distance(self, front: List['MultiObjectiveIndividual']) -> float: def crowding_distance(self, front: List['MultiObjectiveIndividual']) -> float:

View File

@ -1,18 +1,44 @@
from typing import Optional from typing import Optional, List
from ..llm_integration import LLMClient from ..llm_integration import LLMClient
from .verify_operator import VerifyOperator from .verify_operator import VerifyOperator
class AlgorithmIdeasGenerator:
def __init__(self, llm_client: LLMClient):
self.llm_client = llm_client
def generate_ideas(self, problem_desc: str, num_ideas: int) -> List[str]:
"""生成多个不同的算法思路"""
prompt = f"""请为以下问题生成{num_ideas}个不同的算法解决思路:
问题描述{problem_desc}
要求
1. 每个思路用一行简洁描述
2. 不要包含其他任何信息
3. 思路之间应有明显差异
4. 总共返回正好{num_ideas}
示例格式
思路1描述
思路2描述
...
思路{num_ideas}描述
"""
response = self.llm_client._call_llm(prompt, operator="generate_ideas")
return [line.strip() for line in response.split('\n') if line.strip()]
class InitializeOperator: class InitializeOperator:
def __init__(self, llm_client: LLMClient): def __init__(self, llm_client: LLMClient):
self.llm_client = llm_client self.llm_client = llm_client
self.ideas_generator = AlgorithmIdeasGenerator(llm_client)
self.verify_operator = VerifyOperator(llm_client) self.verify_operator = VerifyOperator(llm_client)
def generate_initial_code(self, problem_desc: str, function_name: str, input_fmt: str, output_fmt: str) -> str: def generate_initial_code(self, problem_desc: str, function_name: str,
"""生成初始算法代码""" input_fmt: str, output_fmt: str, idea: str = None) -> str:
prompt = f"""请用Python编写一个解决以下问题的函数 """基于特定思路生成初始代码"""
问题描述{problem_desc} base_prompt = f"""请用Python实现以下算法思路
思路{idea or '默认算法'}
函数要求 具体要求
1. 函数名{function_name} 1. 函数名{function_name}
2. 输入{input_fmt} 2. 输入{input_fmt}
3. 返回值{output_fmt} 3. 返回值{output_fmt}
@ -20,11 +46,10 @@ class InitializeOperator:
注意 注意
- 不需要添加类型注解 - 不需要添加类型注解
- 只返回函数代码不要包含任何解释或测试用例 - 只返回函数代码不要包含任何解释或测试用例
- 我们允许返回的代码中包含了多个函数但是一定要确直接运行{function_name}函数并将数据传入即可完成全部流程并获得预期的返回 - 可以包含多个辅助函数
- 算法应该尽可能地创新避免完全依赖已有的成熟算法可以接受在成熟算法的基础上进行一定的修改 - 代码应简洁高效
- 算法应该尽可能地简洁避免不必要的复杂性
""" """
code = self.llm_client._call_llm(prompt, operator="initialize") code = self.llm_client._call_llm(base_prompt, operator="initialize")
if code: if code:
return self.verify_operator.verify_code_format(code, function_name) return self.verify_operator.verify_code_format(code, function_name)
return None return None

View File

@ -1,11 +0,0 @@
Generation 0000 | Pareto Front Size: 1 | Timestamp: 2025-04-16T01:20:59.478238
Generation 0000 | Pareto Front Size: 3 | Timestamp: 2025-04-16T15:20:24.296920
Generation 0001 | Pareto Front Size: 5 | Timestamp: 2025-04-16T15:21:20.873092
Generation 0002 | Pareto Front Size: 3 | Timestamp: 2025-04-16T15:23:24.293834
Generation 0003 | Pareto Front Size: 5 | Timestamp: 2025-04-16T15:24:37.459385
Generation 0004 | Pareto Front Size: 1 | Timestamp: 2025-04-16T15:26:28.544849
Generation 0005 | Pareto Front Size: 1 | Timestamp: 2025-04-16T15:30:30.213218
Generation 0006 | Pareto Front Size: 1 | Timestamp: 2025-04-16T15:36:01.517114
Generation 0007 | Pareto Front Size: 2 | Timestamp: 2025-04-16T15:40:15.364620
Generation 0008 | Pareto Front Size: 2 | Timestamp: 2025-04-16T15:47:35.288547
Generation 0009 | Pareto Front Size: 3 | Timestamp: 2025-04-16T15:51:29.712877

View File

@ -1,83 +0,0 @@
{
"generation": 0,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available = [False] * n\n \n def get_neighbor_colors(node):\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:\n available[colors[neighbor]] = True\n\n def assign_color(node):\n get_neighbor_colors(node)\n color = 0\n while color < n:\n if not available[color]:\n colors[node] = color\n break\n color += 1\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:\n available[colors[neighbor]] = False\n \n for node in range(n):\n if colors[node] == -1:\n assign_color(node)\n available = [False] * n\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 1.0018470287322998
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n \n vertex_order = list(range(n))\n random.shuffle(vertex_order)\n \n for vertex in vertex_order:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n color = 0\n while color < n and not available_colors[color]:\n color += 1\n \n colors[vertex] = color\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 32,
"execution_time": 1.5306849479675293
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n available_colors = [True] * n\n\n def greedy_coloring():\n colors[0] = 0\n\n for u in range(1, n):\n available_colors[:] = [True] * n\n \n for v in range(n):\n if adj_matrix[u][v] == 1 and colors[v] != -1:\n available_colors[colors[v]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[u] = color\n break\n\n greedy_coloring()\n \n def optimize_colors():\n color_count = max(colors) + 1\n color_mapping = {i: [] for i in range(color_count)}\n \n for vertex in range(n):\n if colors[vertex] != -1:\n color_mapping[colors[vertex]].append(vertex)\n \n for color in range(color_count):\n if not color_mapping[color]:\n continue\n for new_color in range(color + 1, color_count):\n if new_color not in color_mapping:\n continue\n is_codable = True\n for v1 in color_mapping[color]:\n for v2 in color_mapping[new_color]:\n if adj_matrix[v1][v2] == 1:\n is_codable = False\n break\n if not is_codable:\n break\n if is_codable:\n for v in color_mapping[new_color]:\n colors[v] = color\n del color_mapping[new_color]\n break\n\n optimize_colors()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 1.539431095123291
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n available_colors = [False] * n\n \n def find_available_color(vertex):\n for i in range(n):\n available_colors[i] = True\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n return color\n return n\n\n for vertex in range(n):\n colors[vertex] = find_available_color(vertex)\n \n def optimize_coloring():\n unique_colors = sorted(set(colors))\n color_map = {old_color: new_color for new_color, old_color in enumerate(unique_colors)}\n for i in range(n):\n colors[i] = color_map[colors[i]]\n\n optimize_coloring()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 2.813322067260742
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n \n def get_available_colors(vertex):\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n return available_colors\n\n vertex_order = list(range(n))\n random.shuffle(vertex_order)\n \n for vertex in vertex_order:\n available_colors = get_available_colors(vertex)\n \n color = 0\n while color < n and not available_colors[color]:\n color += 1\n \n if color == n:\n min_color_used = min([c for c in colors if c != -1], default=0)\n color = min_color_used + 1\n \n colors[vertex] = color\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 2.3673529624938965
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n \n def assign_colors():\n for node in range(n):\n if colors[node] == -1:\n reset_available()\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n colors[node] = get_first_available_color()\n \n def reset_available():\n for i in range(n):\n available_colors[i] = True\n\n def get_first_available_color():\n for color in range(n):\n if available_colors[color]:\n return color\n return n\n\n def local_search():\n for node in range(n):\n current_color = colors[node]\n for try_color in range(n):\n if try_color != current_color and is_valid_color_assignment(node, try_color):\n colors[node] = try_color\n break\n\n def is_valid_color_assignment(node, color):\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n assign_colors()\n \n for _ in range(n):\n local_search()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": Infinity,
"execution_time": Infinity
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n available_colors = [True] * n\n\n def is_color_possible(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def greedy_coloring():\n for vertex in range(n):\n available_colors[:] = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n\n def local_search():\n improved = True\n while improved:\n improved = False\n for vertex in range(n):\n current_color = colors[vertex]\n conflict_colors = set()\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1:\n conflict_colors.add(colors[neighbor])\n for new_color in range(len(conflict_colors) + 1):\n if new_color not in conflict_colors:\n if new_color != current_color:\n colors[vertex] = new_color\n improved = True\n break\n\n local_search()\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": Infinity,
"execution_time": Infinity
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n available_colors = [True] * n\n\n def greedy_coloring():\n colors[0] = 0\n\n for u in range(1, n):\n available_colors[:] = [True] * n\n \n for v in range(n):\n if adj_matrix[u][v] == 1 and colors[v] != -1:\n available_colors[colors[v]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[u] = color\n break\n\n greedy_coloring()\n \n def optimize_colors():\n color_count = max(colors) + 1\n color_mapping = {i: [] for i in range(color_count)}\n \n for vertex in range(n):\n if colors[vertex] != -1:\n color_mapping[colors[vertex]].append(vertex)\n \n merged = True\n while merged:\n merged = False\n for color in range(color_count):\n if not color_mapping[color]:\n continue\n for new_color in range(color + 1, color_count):\n if new_color not in color_mapping:\n continue\n is_codable = True\n for v1 in color_mapping[color]:\n for v2 in color_mapping[new_color]:\n if adj_matrix[v1][v2] == 1:\n is_codable = False\n break\n if not is_codable:\n break\n if is_codable:\n for v in color_mapping[new_color]:\n colors[v] = color\n del color_mapping[new_color]\n merged = True\n color_count -= 1\n break\n if merged:\n break\n\n optimize_colors()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 2.5284109115600586
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available = [False] * n\n \n def get_neighbor_colors(node):\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:\n available[colors[neighbor]] = True\n\n def assign_color(node):\n get_neighbor_colors(node)\n color = 0\n while color < n:\n if not available[color]:\n colors[node] = color\n break\n color += 1\n for neighbor in range(n):\n if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:\n available[colors[neighbor]] = False\n \n for node in range(n):\n if colors[node] == -1:\n assign_color(node)\n available = [False] * n\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 1.0018470287322998
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,91 +0,0 @@
{
"generation": 0,
"population": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9745118618011475
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n def optimize_color_count():\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(sorted(used_colors))}\n for i in range(n):\n if colors[i] in color_map:\n colors[i] = color_map[colors[i]]\n \n optimize_color_count()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0744099617004395
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9745118618011475
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 33,
"execution_time": 1.0532798767089844
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n \n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 29,
"execution_time": 1.081273078918457
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9857227802276611
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = True\n\n for vertex in range(n):\n if colors[vertex] == -1:\n assign_color(vertex)\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 1.9481892585754395
}
}
],
"pareto_front": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9745118618011475
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n def optimize_color_count():\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(sorted(used_colors))}\n for i in range(n):\n if colors[i] in color_map:\n colors[i] = color_map[colors[i]]\n \n optimize_color_count()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0744099617004395
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9745118618011475
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,115 +0,0 @@
{
"generation": 1,
"population": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 1.026442050933838
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n \n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0927319526672363
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n def optimize_color_count():\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(sorted(used_colors))}\n for i in range(n):\n if colors[i] in color_map:\n colors[i] = color_map[colors[i]]\n \n optimize_color_count()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 29,
"execution_time": 1.149785041809082
}
}
],
"pareto_front": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9988811016082764
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,99 +0,0 @@
{
"generation": 2,
"population": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 1.026442050933838
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n color_map = {}\n\n order = list(range(n))\n random.shuffle(order)\n\n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n chosen_color = None\n min_used = float('inf')\n\n for color in range(n):\n if available_colors[color]:\n used_count = color_map.get(color, 0)\n if used_count < min_used:\n min_used = used_count\n chosen_color = color\n\n if chosen_color is not None:\n colors[vertex] = chosen_color\n color_map[chosen_color] = color_map.get(chosen_color, 0) + 1\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 1000,
"execution_time": 1.0046441555023193
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n greedy_coloring()\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.087792158126831
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 32,
"execution_time": 1.035233974456787
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = len(adj_matrix)\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n \n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 0,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0927319526672363
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def optimized_greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n optimized_greedy_coloring()\n \n return colors",
"generation": 3,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0933640003204346
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def assign_color(vertex):\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n def greedy_coloring():\n for vertex in vertices:\n if colors[vertex] == -1:\n assign_color(vertex)\n \n greedy_coloring()\n \n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0939011573791504
}
}
],
"pareto_front": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 1.026442050933838
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n color_map = {}\n\n order = list(range(n))\n random.shuffle(order)\n\n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n chosen_color = None\n min_used = float('inf')\n\n for color in range(n):\n if available_colors[color]:\n used_count = color_map.get(color, 0)\n if used_count < min_used:\n min_used = used_count\n chosen_color = color\n\n if chosen_color is not None:\n colors[vertex] = chosen_color\n color_map[chosen_color] = color_map.get(chosen_color, 0) + 1\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 1000,
"execution_time": 1.0046441555023193
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n greedy_coloring()\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.087792158126831
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,115 +0,0 @@
{
"generation": 3,
"population": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n order = list(range(n))\n random.shuffle(order)\n\n def optimized_color_selection(vertex):\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n return color\n return -1\n\n for vertex in order:\n colors[vertex] = optimized_color_selection(vertex)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 1.004497766494751
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n color_map = {}\n\n order = list(range(n))\n random.shuffle(order)\n\n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n chosen_color = None\n min_used = float('inf')\n\n for color in range(n):\n if available_colors[color]:\n used_count = color_map.get(color, 0)\n if used_count < min_used:\n min_used = used_count\n chosen_color = color\n\n if chosen_color is not None:\n colors[vertex] = chosen_color\n color_map[chosen_color] = color_map.get(chosen_color, 0) + 1\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 1000,
"execution_time": 1.0046441555023193
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n order = list(range(n))\n random.shuffle(order)\n \n for vertex in order:\n available_colors = [True] * n\n \n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n return colors",
"generation": 0,
"fitnesses": {
"color_count": 32,
"execution_time": 1.035233974456787
}
}
],
"pareto_front": [
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.9886589050292969
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n order = list(range(n))\n random.shuffle(order)\n\n def optimized_color_selection(vertex):\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color]:\n return color\n return -1\n\n for vertex in order:\n colors[vertex] = optimized_color_selection(vertex)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 1.004497766494751
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,83 +0,0 @@
{
"generation": 4,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9938340187072754
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.975269079208374
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n current_color = 0\n color_count = 0\n for vertex in vertices:\n available_colors = [True] * (color_count + 1)\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(len(available_colors)):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n if colors[vertex] == color_count:\n color_count += 1\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0908830165863037
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n color_mapping = {}\n next_color = 0\n \n for vertex in vertices:\n available_colors = set(range(n))\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors.discard(colors[neighbor])\n chosen_color = min(available_colors)\n colors[vertex] = chosen_color\n \n if chosen_color not in color_mapping:\n color_mapping[chosen_color] = next_color\n next_color += 1\n colors[vertex] = color_mapping[chosen_color]\n \n optimized_coloring()\n\n unique_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(unique_colors)}\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.1260502338409424
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n order = list(range(n))\n random.shuffle(order)\n\n def optimized_color_selection(vertex):\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n min_color = n\n for color in range(n):\n if available_colors[color]:\n min_color = min(min_color, color)\n return min_color if min_color < n else -1\n\n for vertex in order:\n chosen_color = optimized_color_selection(vertex)\n colors[vertex] = chosen_color\n\n color_count = len(set(colors))\n improvement = True\n\n while improvement:\n improvement = False\n for vertex in order:\n current_color = colors[vertex]\n if current_color == -1:\n continue\n \n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(n):\n if available_colors[color] and color != current_color:\n colors[vertex] = color\n new_color_count = len(set(colors))\n if new_color_count < color_count:\n color_count = new_color_count\n improvement = True\n else:\n colors[vertex] = current_color\n break\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 30,
"execution_time": 2.031809091567993
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,83 +0,0 @@
{
"generation": 5,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.975269079208374
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n current_color = 0\n color_count = 0\n for vertex in vertices:\n available_colors = [True] * (color_count + 1)\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(len(available_colors)):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n if colors[vertex] == color_count:\n color_count += 1\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0908830165863037
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n # Optimize color assignment to minimize color_count\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n # Remap colors to ensure they are contiguous and minimize color_count\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(sorted(used_colors))}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 3,
"fitnesses": {
"color_count": 29,
"execution_time": 1.1028988361358643
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,83 +0,0 @@
{
"generation": 6,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9685137271881104
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n current_color = 0\n color_count = 0\n for vertex in vertices:\n available_colors = [True] * (color_count + 1)\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(len(available_colors)):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n if colors[vertex] == color_count:\n color_count += 1\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0908830165863037
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.975269079208374
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 0.5790848731994629
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,91 +0,0 @@
{
"generation": 7,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9685137271881104
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n current_color = 0\n color_count = 0\n for vertex in vertices:\n available_colors = [True] * (color_count + 1)\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(len(available_colors)):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n if colors[vertex] == color_count:\n color_count += 1\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0908830165863037
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.975269079208374
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.6299710273742676
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9685137271881104
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,91 +0,0 @@
{
"generation": 8,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9685137271881104
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 33,
"execution_time": 0.975269079208374
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.6299710273742676
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n current_color = 0\n color_count = 0\n for vertex in vertices:\n available_colors = [True] * (color_count + 1)\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n \n for color in range(len(available_colors)):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n if colors[vertex] == color_count:\n color_count += 1\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 3.362344980239868
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 0.9685137271881104
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}

View File

@ -1,99 +0,0 @@
{
"generation": 9,
"population": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n \n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n \n def greedy_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n \n greedy_coloring()\n \n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0919930934906006
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 2.6567630767822266
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n used_colors = set(colors)\n color_map = {old_color: new_color for new_color, old_color in enumerate(used_colors)}\n colors = [color_map[color] for color in colors]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 29,
"execution_time": 1.6299710273742676
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n \n def minimize_colors():\n unique_colors = set(colors)\n color_map = {color: idx for idx, color in enumerate(unique_colors)}\n \n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_map[colors[i]]\n \n new_unique_colors = set(colors)\n new_color_count = len(new_unique_colors)\n \n color_count = new_color_count\n for i in range(n):\n for color in range(color_count):\n if color not in new_unique_colors:\n colors[i] = color\n break\n new_unique_colors = set(colors)\n if len(new_unique_colors) < color_count:\n color_count = len(new_unique_colors)\n \n minimize_colors()\n \n return colors",
"generation": 1,
"fitnesses": {
"color_count": 31,
"execution_time": 2.893918037414551
}
},
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n final_colors = [-1] * n\n color_mapping = {}\n next_color = 0\n\n for i in range(n):\n if colors[i] != -1:\n if colors[i] not in color_mapping:\n color_mapping[colors[i]] = next_color\n next_color += 1\n final_colors[i] = color_mapping[colors[i]]\n\n return final_colors",
"generation": 5,
"fitnesses": {
"color_count": 29,
"execution_time": 2.8868300914764404
}
}
],
"pareto_front": [
{
"code": "import numpy as np\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n degree = [sum(row) for row in adj_matrix]\n vertices = list(range(n))\n vertices.sort(key=lambda x: -degree[x])\n\n def can_color(vertex, color):\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] == color:\n return False\n return True\n\n def optimized_coloring():\n for vertex in vertices:\n available_colors = [True] * n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n for color in range(n):\n if available_colors[color]:\n colors[vertex] = color\n break\n\n optimized_coloring()\n\n unique_colors = set(colors)\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(len(unique_colors)):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 4,
"fitnesses": {
"color_count": 29,
"execution_time": 1.0881679058074951
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n available_colors = [True] * n\n\n def assign_color(vertex):\n for i in range(n):\n available_colors[i] = True\n\n for neighbor in range(n):\n if adj_matrix[vertex][neighbor] == 1 and colors[neighbor] != -1:\n available_colors[colors[neighbor]] = False\n\n color = 0\n while color < n:\n if available_colors[color]:\n colors[vertex] = color\n break\n color += 1\n return colors[vertex]\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n assign_color(v)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n return colors",
"generation": 1,
"fitnesses": {
"color_count": 32,
"execution_time": 1.0035450458526611
}
},
{
"code": "import numpy as np\nimport random\n\ndef graph_coloring(adj_matrix):\n n = adj_matrix.shape[0]\n colors = [-1] * n\n\n def assign_color(vertex, used_colors):\n for color in range(n):\n if color not in used_colors:\n colors[vertex] = color\n return color\n return -1\n\n vertices = list(range(n))\n random.shuffle(vertices)\n\n for v in vertices:\n if colors[v] == -1:\n used_colors = set()\n for neighbor in range(n):\n if adj_matrix[v][neighbor] == 1 and colors[neighbor] != -1:\n used_colors.add(colors[neighbor])\n assign_color(v, used_colors)\n\n unique_colors = set(colors)\n color_count = len(unique_colors)\n\n for i in range(n):\n if colors[i] != -1:\n for new_color in range(color_count + 1):\n if new_color not in unique_colors:\n colors[i] = new_color\n break\n unique_colors = set(colors)\n\n color_usage = {color: 0 for color in unique_colors}\n for color in colors:\n if color != -1:\n color_usage[color] += 1\n\n color_mapping = {}\n new_color_index = 0\n for color in sorted(color_usage, key=color_usage.get):\n color_mapping[color] = new_color_index\n new_color_index += 1\n\n for i in range(n):\n if colors[i] != -1:\n colors[i] = color_mapping[colors[i]]\n\n return colors",
"generation": 2,
"fitnesses": {
"color_count": 34,
"execution_time": 0.9917922019958496
}
}
],
"objective_names": [
"color_count",
"execution_time"
]
}